Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Phytomedicine ; 129: 155613, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38703659

ABSTRACT

BACKGROUND: Psychological stress is associated with various diseases including liver dysfunction, yet effective intervention strategies remain lacking due to the unrevealed pathogenesis mechanism. PURPOSE: This study aims to explore the relevance between BMAL1-controlled circadian rhythms and lipoxygenase 15 (ALOX15)-mediated phospholipids peroxidation in psychological stress-induced liver injury, and to investigate whether hepatocyte phospholipid peroxidation signaling is involved in the hepatoprotective effects of a Chinese patent medicine, Pien Tze Huang (PZH). METHODS: Restraint stress models were established to investigate the underlying molecular mechanisms of psychological stress-induced liver injury and the hepatoprotective effects of PZH. Redox lipidomics based on liquid chromatography-tandem mass spectrometry was applied for lipid profiling. RESULTS: The present study discovered that acute restraint stress could induce liver injury. Notably, lipidomic analysis confirmed that phospholipid peroxidation was accumulated in the livers of stressed mice. Additionally, the essential core circadian clock gene Brain and Muscle Arnt-like Protein-1 (Bmal1) was altered in stressed mice. Circadian disruption in mice, as well as BMAL1-overexpression in human HepaRG cells, also appeared to have a significant increase in phospholipid peroxidation, suggesting that stress-induced liver injury is closely related to circadian rhythm and phospholipid peroxidation. Subsequently, arachidonate 15-lipoxygenase (ALOX15), a critical enzyme that contributed to phospholipid peroxidation, was screened as a potential regulatory target of BMAL1. Mechanistically, BMAL1 promoted ALOX15 expression via direct binding to an E-box-like motif in the promoter. Finally, this study revealed that PZH treatment significantly relieved pathological symptoms of psychological stress-induced liver injury with a potential mechanism of alleviating ALOX15-mediated phospholipid peroxidation. CONCLUSION: Our findings illustrate the critical role of BMAL1-triggered phospholipid peroxidation in psychological stress-induced liver injury and provide new insight into treating psychological stress-associated liver diseases by TCM intervention.

2.
Food Chem ; 451: 139344, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38663238

ABSTRACT

A novel bacteriocin, plantaricin ZFM9, was purified from Lactiplantibacillus plantarum ZFM9 using a combination of ammonium sulfate precipitation, XAD-2 macroporous resin, Sephadex G-50, Sephadex LH-20, and reversed-phase high performance liquid chromatography. The molecular mass of plantaricin ZFM9 was 1151.606 Da, and the purity was 98.3%. Plantaricin ZFM9 has thermal stability (95.6% retention at 120 °C for 30 min), pH stability (pH ≤ 5), and sensitivity to the pepsin, trypsin, papain, and proteinase K. Plantaricin ZFM9 exhibited broad-spectrum antimicrobial activity and notably inhibit methicillin-resistant Staphylococcus aureus D48 (MRSA). According to the results of electron microscopy and fluorescence leakage assay, it was found that plantaricin ZFM9 caused damage to the cells membrane and leakage of the contents of S. aureus D48. In addition, Lipid II was not the anti-MRSA target of plantaricin ZFM9. This study underscores the potential of plantaricin ZFM9 for applications in the food field and biopharmaceuticals against MRSA infection.

3.
J Proteome Res ; 23(5): 1859-1870, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38655723

ABSTRACT

To understand how upregulated isoglutaminyl cyclase (isoQC) is involved in the initiation of diseases such as cancer, we developed a human KYSE30 carcinoma cell model in which isoQC was stably overexpressed. GO and KEGG analysis of the DEGs (228) and DEPs (254) respectively implicated isoQC on the proliferation invasion and metastasis of cells and suggested that isoQC might participate in the regulation of MAPK, RAS, circadian rhythm, and related pathways. At the functional level, isoQC-overexpressing KYSE30 cells showed enhanced proliferation, migration, and invasion capacity. Next, we decided to study the precise effect of isoQC overexpression on JNK, p-JNK, AKT, p-AKT, ERK, p-ERK, and PER2, as RNA levels of these proteins are significantly correlated with signal levels indicated in RNA-Seq analysis, and these candidates are the top correlated DEPs enriched in RT-qPCR analysis. We saw that only p-ERK expression was inhibited, while PER2 was increased. These phenotypes were inhibited upon exposure to PER2 inhibitor KL044, which allowed for the restoration of p-ERK levels. These data support upregulated isoQC being able to promote cancer cell proliferation and migration in vitro, likely by helping to regulate the MAPK and RAS signaling pathways, and the circadian protein PER2 might be a potential mediator.


Subject(s)
Aminoacyltransferases , Cell Movement , Cell Proliferation , MAP Kinase Signaling System , Humans , Cell Proliferation/genetics , Cell Movement/genetics , MAP Kinase Signaling System/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Neoplasm Invasiveness , Up-Regulation , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism
4.
Sci Rep ; 14(1): 6403, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493251

ABSTRACT

Chinese patent medicine (CPM) is a typical type of traditional Chinese medicine (TCM) preparation that uses Chinese herbs as raw materials and is an important means of treating diseases in TCM. Chinese patent medicine instructions (CPMI) serve as a guide for patients to use drugs safely and effectively. In this study, we apply a pre-trained language model to the domain of CPM. We have meticulously assembled, processed, and released the first CPMI dataset and fine-tuned the ChatGLM-6B base model, resulting in the development of CPMI-ChatGLM. We employed consumer-grade graphics cards for parameter-efficient fine-tuning and investigated the impact of LoRA and P-Tuning v2, as well as different data scales and instruction data settings on model performance. We evaluated CPMI-ChatGLM using BLEU, ROUGE, and BARTScore metrics. Our model achieved scores of 0.7641, 0.8188, 0.7738, 0.8107, and - 2.4786 on the BLEU-4, ROUGE-1, ROUGE-2, ROUGE-L and BARTScore metrics, respectively. In comparison experiments and human evaluation with four large language models of similar parameter scales, CPMI-ChatGLM demonstrated state-of-the-art performance. CPMI-ChatGLM demonstrates commendable proficiency in CPM recommendations, making it a promising tool for auxiliary diagnosis and treatment. Furthermore, the various attributes in the CPMI dataset can be used for data mining and analysis, providing practical application value and research significance.


Subject(s)
Drugs, Chinese Herbal , Nonprescription Drugs , Humans , Medicine, Chinese Traditional/methods , Data Mining , Drugs, Chinese Herbal/therapeutic use
5.
Obstet Gynecol ; 143(5): e136-e139, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38513235

ABSTRACT

BACKGROUND: Postpartum necrotizing myositis is a rare condition, typically presenting as a complication after uterine artery embolization or uterine compression suturing. Uterine ischemia can cause endometrial necrosis and even myometrial necrosis, which can lead to systemic infection. If a systemic infection is not promptly and actively treated, it may pose significant risk. CASE: A 35-year-old patient who had undergone bilateral uterine artery ligation, modified B-Lynch suture, and multiple compression sutures due to refractory postpartum hemorrhage frequently presented to clinic after postpartum discharge due to persistent fever and vaginal discharge. A bag-like prolapse from the vagina measuring 10×5 cm, accompanied by purulent discharge, was noted 78 days postsurgery. Subsequent pelvic magnetic resonance imaging revealed a uterine basal abscess and postpartum necrotizing myositis; an emergency laparoscopic supracervical hysterectomy was performed, with postoperative pathology confirming the diagnosis. After the patient's discharge, she was readmitted for inpatient treatment of a pelvic abscess. CONCLUSIONS: Although rare, postpartum necrotizing myositis should be considered in postpartum patients presenting with fever, abdominal pain, severe infection symptoms, and abnormal vaginal discharge. Culture and sensitivity testing are recommended to direct appropriate antibiotic therapy.


Subject(s)
Myositis , Postpartum Hemorrhage , Vaginal Discharge , Pregnancy , Female , Humans , Adult , Abscess , Postpartum Hemorrhage/therapy , Postpartum Period , Prolapse , Necrosis/complications , Myositis/diagnosis , Myositis/therapy , Myositis/complications
6.
Free Radic Biol Med ; 218: 132-148, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554812

ABSTRACT

Acute respiratory distress syndrome (ARDS) is an acute and severe clinical complication lacking effective therapeutic interventions. The disruption of the lung epithelial barrier plays a crucial role in ARDS pathogenesis. Recent studies have proposed the involvement of abnormal mitochondrial dynamics mediated by dynamin-related protein 1 (Drp1) in the mechanism of impaired epithelial barrier in ARDS. Hydrogen is an anti-oxidative stress molecule that regulates mitochondrial function via multiple signaling pathways. Our previous study confirmed that hydrogen modulated oxidative stress and attenuated acute pulmonary edema in ARDS by upregulating thioredoxin 1 (Trx1) expression, but the exact mechanism remains unclear. This study aimed to investigate the effects of hydrogen on mitochondrial dynamics both in vivo and in vitro. Our study revealed that hydrogen inhibited lipopolysaccharide (LPS)-induced phosphorylation of Drp1 (at Ser616), suppressed Drp1-mediated mitochondrial fission, alleviated epithelial tight junction damage and cell apoptosis, and improved the integrity of the epithelial barrier. This process was associated with the upregulation of Trx1 in lung epithelial tissues of ARDS mice by hydrogen. In addition, hydrogen treatment reduced the production of reactive oxygen species in LPS-induced airway epithelial cells (AECs) and increased the mitochondrial membrane potential, indicating that the mitochondrial dysfunction was restored. Then, the expression of tight junction proteins occludin and zonula occludens 1 was upregulated, and apoptosis in AECs was alleviated. Remarkably, the protective effects of hydrogen on the mitochondrial and epithelial barrier were eliminated after applying the Trx1 inhibitor PX-12. The results showed that hydrogen significantly inhibited the cell apoptosis and the disruption of epithelial tight junctions, maintaining the integrity of the epithelial barrier in mice of ARDS. This might be related to the inhibition of Drp1-mediated mitochondrial fission through the Trx1 pathway. The findings of this study provided a new theoretical basis for the application of hydrogen in the clinical treatment of ARDS.


Subject(s)
Dynamins , Hydrogen , Lipopolysaccharides , Mitochondrial Dynamics , Respiratory Distress Syndrome , Thioredoxins , Animals , Thioredoxins/metabolism , Thioredoxins/genetics , Mitochondrial Dynamics/drug effects , Dynamins/metabolism , Dynamins/genetics , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/pathology , Mice , Humans , Hydrogen/pharmacology , Lipopolysaccharides/toxicity , Lung/pathology , Lung/metabolism , Lung/drug effects , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Male , Apoptosis/drug effects , Oxidative Stress/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Disease Models, Animal , Tight Junctions/metabolism , Tight Junctions/drug effects , Tight Junctions/pathology , Mice, Inbred C57BL , Phosphorylation/drug effects
7.
J Am Chem Soc ; 146(7): 4851-4863, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38346857

ABSTRACT

The abnormal evolution of membrane-less organelles into amyloid fibrils is a causative factor in many neurodegenerative diseases. Fundamental research on evolving organic aggregates is thus instructive for understanding the root causes of these diseases. In-situ monitoring of evolving molecular aggregates with built-in fluorescence properties is a reliable approach to reflect their subtle structural variation. To increase the sensitivity of real-time monitoring, we presented organic aggregates assembled by TPAN-2MeO, which is a triphenyl acrylonitrile derivative. TPAN-2MeO showed a morphological evolution with distinct turn-on emission. Upon rapid nanoaggregation, it formed non-emissive spherical aggregates in the kinetically metastable state. Experimental and simulation results revealed that the weak homotypic interactions between the TPAN-2MeO molecules liberated their molecular motion for efficient non-radiative decay, and the strong heterotypic interactions between TPAN-2MeO and water stabilized the molecular geometry favorable for the non-fluorescent state. After ultrasonication, the decreased heterotypic interactions and increased homotypic interactions acted synergistically to allow access to the emissive thermodynamic equilibrium state with a decent photoluminescence quantum yield (PLQY). The spherical aggregates were eventually transformed into micrometer-sized blocklike particles. Under mechanical stirring, the co-assembly of TPAN-2MeO and Pluronic F-127 formed uniform fluorescent platelets, inducing a significant enhancement in PLQY. These results decipher the stimuli-triggered structural variation of organic aggregates with concurrent sensitive fluorescence response and pave the way for a deep understanding of the evolutionary events of biogenic aggregates.


Subject(s)
Amyloid , Water , Fluorescence
8.
Analyst ; 149(3): 859-869, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38167646

ABSTRACT

High efficiency, stability, long emission wavelength (NIR-II), and good biocompatibility are crucial for photosensitizers in phototherapy. However, current Food and Drug Administration (FDA)-approved organic fluorophores exhibit poor chemical stability and photostability as well as short emission wavelength, limiting their clinical usage. To address this, we developed Se-IR1100, a novel organic photosensitizer with a photostable and thermostable benzobisthiadiazole (BBTD) backbone. By incorporating selenium as a heavy atom and constructing a D-A-D structure, Se-IR1100 exhibits a maximum fluorescence emission wavelength of 1100 nm. Compared with FDA-approved indocyanine green (ICG), DSPE-PEGylated Se-IR1100 nanoparticles exhibit prominent photostability and long-lasting photothermal effects. Upon 808 nm laser irradiation, Se-IR1100 NPs efficiently convert light energy into heat and reactive oxygen species (ROS), inducing cancer cell death in cellular studies and living organisms while maintaining biocompatibility. With salient photostability and a photothermal conversion rate of 55.37%, Se-IR1100 NPs hold promise as a superior photosensitizer for diagnostic and therapeutic agents in oncology. Overall, we have designed and optimized a multifunctional photosensitizer Se-IR1100 with good biocompatibility that performs NIR-II fluorescence imaging and phototherapy. This dual-strategy method may offer novel approaches for the development of multifunctional probes using dual-strategy or even multi-strategy methods in bioimaging, disease diagnosis, and therapy.


Subject(s)
Nanoparticles , Neoplasms , Selenium , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Phototherapy/methods , Indocyanine Green/toxicity , Nanoparticles/chemistry , Neoplasms/drug therapy , Cell Line, Tumor
9.
Oncogene ; 43(2): 106-122, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37950040

ABSTRACT

VPS35 is a key subunit of the retromer complex responsible for recognising cytosolic retrieval signals in cargo and is involved in neurodegenerative disease and tumour progression. However, the function and molecular mechanism of VPS35 in gastric cancer (GC) remains largely unknown. Here, we demonstrated that VPS35 was significantly upregulated in GC, which was associated with poor survival. VPS35 promoted GC cell proliferation and metastasis both in vitro and in vivo. Mechanistically, VPS35 activated FAK-SRC kinases through integrin-mediated outside-in signalling, leading to the activation of YAP and subsequent IL-6 expression induction in tumour cells. What's more, combined mass spectrometry analysis of MGC-803 cell and bioinformatic analysis, we found that phosphorylation of VPS35 was enhanced in GC cells, and phosphorylated VPS35 has enhanced interaction with ITGB3. VPS35 interacted with ITGB3 and affected the recycling of ITGB3 in GC cells. Gain- and loss-of-function experiments revealed that VPS35 promoted tumour proliferation and metastasis via the IL-6/STAT3 pathway. Interestingly, we also found that STAT3 directly bound to the VPS35 promoter and increased VPS35 transcription, thereby establishing a positive regulatory feedback loop. In addition, we demonstrated that VPS35 knockdown sensitised GC cells to 5-FU and cisplatin. These findings provide evidence that VPS35 promotes tumour proliferation and metastasis, and highlight the potential of targeting VPS35- and IL-6/STAT3-mediated tumour interactions as promising therapeutic strategies for GC.


Subject(s)
Neurodegenerative Diseases , Stomach Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation , Integrins/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , YAP-Signaling Proteins , src-Family Kinases
10.
Comput Biol Med ; 168: 107750, 2024 01.
Article in English | MEDLINE | ID: mdl-38029531

ABSTRACT

OBJECTIVE: Gliomas are a heterogeneous group of brain tumors with distinct biological and clinical properties, leading to significant mortality and morbidity. Emerging evidence shows telomere maintenance has implicated in glioma susceptibility and prognosis. In this study, we comprehensively analyzed gene signatures related to telomere maintenance in glioma and their predictive values for predicting the prognosis and drug sensitivity in glioma. METHODS: We initially identified telomere-related genes differentially expressed between low-grade glioma (LGG) and glioblastoma (GBM) and accordingly developed a risk model by univariate and multivariate Cox analysis to assess the expressions of telomere-related genes across the risk groups. Finally, to assess these genes in immune function the anti-tumor medications often used in the clinical treatment of glioma, we computed immune cell infiltration analysis and drug sensitivity analysis. RESULTS: The consensus clustering analysis identified 20 telomere-related genes which split LGG patients into two distinct subtypes. The patient survival, the expressions of key telomere-related DEGs, and immune cell infiltration significantly differed between Cluster 1 and Cluster 2. The LASSO risk model [riskScore=(0.086)*HOXA7+(0.242)*WEE1+(0.247)*IGF2BP3+(0.052)*DUSP10] showed significant differences regarding the 1-, 3-, 5-year overall survival, immune cell infiltration, and drug sensitivity between high- and low-risk groups. The predictive nomogram constructed to quantify the survival probability of each sample at 1, 3, and 5 years was consistent with the actual patient survival. CONCLUSION: Our comprehensive characterization of telomere-associated gene signatures in glioma reveals their possible roles in the development, tumor microenvironment, and prognosis. The study provides some suggestive relationships between four telomere-related genes (HOXA7, WEE1, IGF2BP3, and DUSP10) and glioma prognosis.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/drug therapy , Glioma/genetics , Telomere/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cluster Analysis , Tumor Microenvironment , Dual-Specificity Phosphatases , Mitogen-Activated Protein Kinase Phosphatases
11.
Bioorg Med Chem ; 97: 117542, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38104495

ABSTRACT

Glutaminyl cyclase (QC) plays a crucial role in the early stages of Alzheimer's disease (AD), thus inhibition of QC may be a promising strategy for the treatment of early AD. Therefore, QC inhibitors with novel chemical scaffolds may contribute to the development of additional anti-AD agents. We conducted a virtual screening of 3 million compounds from the Chemdiv and Enamine databases, to discover potential scaffolds for QC inhibitors. Three scaffolds, 120974, 147706, and 141449, were selected from this structure-based virtual screening through a combination of pharmacophore modeling, a receptor-ligand pharmacophore model, and the GALAHAD model, and furtherly filtered by chelation with zinc ion and docking properties. Consequently, three compounds, 1, 2, and 3, were designed and synthesized based on these three scaffolds, respectively. The IC50 of compounds 1 and 3 against QC were 14.19 ± 4.21 and 4.34 ± 0.35 µM, respectively. Our results indicate that the new scaffolds selected using a virtual screening process exhibit potential as novel QC inhibitors.


Subject(s)
Alzheimer Disease , Aminoacyltransferases , Humans , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Docking Simulation
12.
BMC Vet Res ; 19(1): 271, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38087280

ABSTRACT

BACKGROUND: Peripheral blood carries a reservoir of mRNAs that regulate cardiac structure and function potential. Although it is well recognized that the typical symptoms of Myxomatous Mitral Valve Disease (MMVD) stage B2 are long-standing hemodynamic disorder and cardiac structure remodeling caused by mitral regurgitation, the transcriptomic alterations in blood from such dogs are not understood. RESULTS: In the present study, comparative high-throughput transcriptomic profiling of blood was performed from normal control (NC) and naturally-occurring MMVD stage B2 (MMVD) dogs. Using Weighted Gene Co-expression Network Analyses (WGCNA), Gene Ontology (GO), and Kyoto Encyclopedia of Gene and Genomes (KEGG), we identified that the turquoise module was the most highly correlated with echocardiographic features and found 64 differentially expressed genes (DEGs) that were significantly enriched in platelet activation related pathways. Therefore, from the turquoise module, we selected five DEGs (MDM2, ROCK1, RIPK1, SNAP23, and ARHGAP35) that, according to real-time qPCR, exhibited significant enrichment in platelet activation related pathways for validation. The results showed that the blood transcriptional abundance of MDM2, ROCK1, RIPK1, and SNAP23 differed significantly (P < 0.01) between NC and MMVD dogs. On the other hand, Correlation Analysis revealed that MDM2, ROCK1, RIPK1, and SNAP23 genes negatively regulated the heart structure parameters, and followed the same trend as observed in WGCNA. CONCLUSION: We screened four platelet activation related genes, MDM2, ROCK1, RIPK1, and SNAP23, which may be considered as the candidate biomarkers for the diagnosis of MMVD stage B2. These findings provided new insights into MMVD pathogenesis.


Subject(s)
Dog Diseases , Heart Valve Diseases , Mitral Valve Insufficiency , Dogs , Animals , Mitral Valve/pathology , Heart Valve Diseases/genetics , Heart Valve Diseases/veterinary , Mitral Valve Insufficiency/genetics , Mitral Valve Insufficiency/veterinary , Platelet Activation/genetics , Echocardiography/veterinary
13.
J Adv Res ; 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072311

ABSTRACT

INTRODUCTION: Combination immunotherapy holds promise for improving survival in responsive glioblastoma (GBM) patients. Programmed death-ligand 1 (PD-L1) expression in immune microenvironment (IME) is the most important predictive biomarker for immunotherapy. Due to the heterogeneous distribution of PD-L1, post-operative histopathology fails to accurately capture its expression in residual tumors, making intra-operative diagnosis crucial for GBM treatment strategies. However, the current methods for evaluating the expression of PD-L1 are still time-consuming. OBJECTIVE: To overcome the PD-L1 heterogeneity and enable rapid, accurate, and label-free imaging of PD-L1 expression level in GBM IME at the tissue level. METHODS: We proposed a novel intra-operative diagnostic method, Machine Learning Cascade (MLC)-based Raman histopathology, which uses a coordinate localization system (CLS), hierarchical clustering analysis (HCA), support vector machine (SVM), and similarity analysis (SA). This method enables visualization of PD-L1 expression in glioma cells, CD8+ T cells, macrophages, and normal cells in addition to the tumor/normal boundary. The study quantified PD-L1 expression levels using the tumor proportion, combined positive, and cellular composition scores (TPS, CPS, and CCS, respectively) based on Raman data. Furthermore, the association between Raman spectral features and biomolecules was examined biochemically. RESULTS: The entire process from signal collection to visualization could be completed within 30 min. In an orthotopic glioma mouse model, the MLC-based Raman histopathology demonstrated a high average accuracy (0.990) for identifying different cells and exhibited strong concordance with multiplex immunofluorescence (84.31 %) and traditional pathologists' scoring (R2 ≥ 0.9). Moreover, the peak intensities at 837 and 874 cm-1 showed a positive linear correlation with PD-L1 expression level. CONCLUSIONS: This study introduced a new and extendable diagnostic method to achieve rapid and accurate visualization of PD-L1 expression in GBM IMB at the tissular level, leading to great potential in GBM intraoperative diagnosis for guiding surgery and post-operative immunotherapy.

14.
Inflammopharmacology ; 31(6): 2901-2937, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37947913

ABSTRACT

Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents , Biological Products , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Signal Transduction , NF-kappa B/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use
15.
Clin Neurol Neurosurg ; 235: 108044, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951030

ABSTRACT

OBJECTIVE: A resting-state functional magnetic resonance imaging (rs-fMRI) approach was used to explore functional connectivity (FC) in language and non-language brain networks in acute post-stroke aphasia (PSA) patients, with a specific focus on the relationship between these fMRI results and patient clinical presentation. METHODS: In total, 20 acute PSA patients and 30 age-, sex-, and education level-matched healthy control (HC) participants were recruited and subjected to rs-fMRI imaging. In addition, western aphasia battery analyses(WAB) were used to compute aphasia quotient (AQ) values for PSA patients. Granger causality was employed to examine connections among cognition-associated resting-state brain networks, and the right middle frontal gyrus (RMFG),the mirror brain regions of Broca's area and the Wernicke's area, the right superior temporal gyrus were selected as regions of interest (ROIs). The REST plus software was then used to perform FC analyses of these regions to analyze changes in FC related to PSA pathogenesis. RESULTS: Relative to HC individuals, PSA patients exhibited significantly higher levels of intra-network FC between the right middle frontal gyrus (RMFG) and the left middle occipital gyrus (LMOG), with such FC being positively correlated with the AQ scores (P = 0.018). Moreover, reduced FC was detected between the Broca's area homolog and the left middle frontal gyrus (LMFG), while FC was enhanced between the Wernicke's area homolog and cerebellar vermis, and this FC was similarly positively correlated with patient AQ scores (P = 0.0297). CONCLUSION: These results suggest that FC between the bilateral hemispheres of the brain is significantly disrupted in acute PSA patients, interfering with the normal non-specific language network. Aphasia severity was further found to correlate with FC among many of the analyzed regions of the brain.


Subject(s)
Aphasia , Brain Mapping , Humans , Brain Mapping/methods , Brain/diagnostic imaging , Aphasia/diagnostic imaging , Aphasia/etiology , Language , Magnetic Resonance Imaging/methods , Broca Area
16.
Materials (Basel) ; 16(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38005090

ABSTRACT

Inconel 718 (IN718) nickel-based superalloy is widely used in aerospace and nuclear applications owing to its excellent comprehensive mechanical properties, oxidation resistance, and hot corrosion resistance. However, the elemental segregation caused by heterogeneous solidification during casting has great influence on the mechanical properties. Therefore, accurately characterizing the segregation behavior is necessary. Traditional quantitative characterization of elemental segregation uses various sampling methods, in which only macroscopic segregation results are obtained. In this study, micro-beam X-ray fluorescence (µ-XRF) is used for the quantitative characterization of element micro-segregation in IN718 superalloy. The concentration distributions of Cr, Fe, Mo, Nb, and Ti in IN718 alloy are determined with optimized testing parameters, and the degree of elemental segregation in different regions of the analytical area is calculated. It is found that the segregation degree of Nb and Ti in the testing area is larger than other alloying elements. The correlation between the microstructure distribution and the segregation degree of Nb and Ti has been studied using scanning electron microscopy (SEM) combined with energy-dispersive spectrometry (EDS). There is severe segregation of Nb and Ti in areas where Nb-containing precipitates are accumulated. The distribution of abnormal signals of Nb with a high fluorescence intensity has a close relationship with the area of precipitates-enriched Nb.

17.
Eur J Med Chem ; 261: 115833, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37797564

ABSTRACT

Pan-HDAC inhibitors exhibit significant inhibitory activity against multiple myeloma, however, their clinical applications have been hampered by substantial toxic side effects. In contrast, selective HDAC6 inhibitors have demonstrated effectiveness in treating multiple myeloma. Compounds belonging to the class of 1H-benzo[d]imidazole hydroxamic acids have been identified as novel HDAC6 inhibitors, with the benzimidazole group serving as a specific linker for these inhibitors. Notably, compound 30 has exhibited outstanding HDAC6 inhibitory activity (IC50 = 4.63 nM) and superior antiproliferative effects against human multiple myeloma cells, specifically RPMI-8226. Moreover, it has been shown to induce cell cycle arrest in the G2 phase and promote apoptosis through the mitochondrial pathway. In a myeloma RPMI-8226 xenograft model, compound 30 has demonstrated significant in vivo antitumor efficacy (T/C = 34.8%) when administered as a standalone drug, with no observable cytotoxicity. These findings underscore the immense potential of compound 30 as a promising therapeutic agent for the treatment of multiple myeloma.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Multiple Myeloma/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Histone Deacetylase 6 , Cell Proliferation , Imidazoles/pharmacology , Imidazoles/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/pharmacology , Cell Line, Tumor
18.
Helicobacter ; 28(6): e13024, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37798959

ABSTRACT

Helicobacter pylori (H. pylori) is a highly successful human pathogen that colonizes stomach in around 50% of the global population. The colonization of bacterium induces an inflammatory response and a substantial rise in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), mostly derived from host neutrophils and gastric epithelial cells, which play a crucial role in combating bacterial infections. However, H. pylori has developed various strategies to quench the deleterious effects of ROS, including the production of antioxidant enzymes, antioxidant proteins as well as blocking the generation of oxidants. The host's inability to eliminate H. pylori infection results in persistent ROS production. Notably, excessive ROS can disrupt the intracellular signal transduction and biological processes of the host, incurring chronic inflammation and cellular damage, such as DNA damage, lipid peroxidation, and protein oxidation. Markedly, the sustained inflammatory response and oxidative stress during H. pylori infection are major risk factor for gastric carcinogenesis. In this context, we summarize the literature on H. pylori infection-induced ROS production, the strategies used by H. pylori to counteract the host response, and subsequent host damage and gastric carcinogenesis.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Reactive Oxygen Species/metabolism , Helicobacter pylori/physiology , Antioxidants , Stomach Neoplasms/microbiology , Helicobacter Infections/metabolism , Carcinogenesis/metabolism , Gastric Mucosa/microbiology
19.
Planta ; 258(5): 98, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37831319

ABSTRACT

MAIN CONCLUSION: In this study, we assembled the complete plastome and mitogenome of Caragana spinosa and explored the multiple configurations of the organelle genomes. Caragana spinosa belongs to the Papilionoidea subfamily and has significant pharmaceutical value. To explore the possible interaction between the organelle genomes, we assembled and analyzed the plastome and mitogenome of C. spinosa using the Illumina and Nanopore DNA sequencing data. The plastome of C. spinosa was 129,995 bp belonging to the inverted repeat lacking clade (IRLC), which contained 77 protein-coding genes, 29 tRNA genes, and four rRNA genes. The mitogenome was 378,373 bp long and encoded 54 unique genes, including 33 protein-coding, three ribosomal RNA (rRNA), and 18 transfer RNA (tRNA) genes. In addition to the single circular conformation, alternative conformations mediated by one and four repetitive sequences in the plastome and mitogenome were identified and validated, respectively. The inverted repeat (PDR12, the 12th dispersed repeat sequence in C. spinosa plastome) of plastome mediating recombinant was conserved in the genus Caragana. Furthermore, we identified 14 homologous fragments by comparing the sequences of mitogenome and plastome, including eight complete tRNA genes. A phylogenetic analysis of protein-coding genes extracted from the plastid and mitochondrial genomes revealed congruent topologies. Analyses of sequence divergence found one intergenic region, trnN-GUU-ycf1, exhibiting a high degree of variation, which can be used to develop novel molecular markers to distinguish the nine Caragana species accurately. This plastome and mitogenome of C. spinosa could provide critical information for the molecular breeding of C. spinosa and be used as a reference genome for other species of Caragana. In this study, we assembled the complete plastome and mitogenome of Caragana spinosa and explored the multiple configurations of the organelle genomes.


Subject(s)
Caragana , Genome, Mitochondrial , Genome, Plastid , Genome, Mitochondrial/genetics , Caragana/genetics , Phylogeny , Plastids/genetics , RNA, Transfer/genetics
20.
Mol Immunol ; 163: 75-85, 2023 11.
Article in English | MEDLINE | ID: mdl-37748281

ABSTRACT

miR-495 is aberrantly expressed and affects the progression of inflammation in various diseases. However, the mechanisms of miR-495 in bovine endometritis remain largely unknown. This study investigated the mechanism of miR-495 in lipopolysaccharide (LPS)-induced bovine endometritis and pyroptosis and found that miR-495 inhibits NLRP3 inflammasome activation and inflammatory immune responses in endometritis tissue and cell models. Bovine endometrial epithelial cells (BENDs) were treated with 10 µg/mL LPS to establish a cell inflammatory model. LPS stimulation activated the NLRP3 inflammasome and elevated the expression of proinflammatory factors in BEND cells. In addition, pyroptosis and methylation-dependent inhibition of miR-495 was discovered in LPS-exposed BENDs. Furthermore, overexpression of miR-495 inhibited activation of the NLRP3 inflammasome in vitro and vivo. Collectively, our data demonstrate that miR-495 can attenuate activation of the NLRP3 inflammasome to protect against pyroptosis and bovine endometritis, which provides novel therapeutic targets for bovine endometritis and other inflammatory diseases.


Subject(s)
Endometritis , MicroRNAs , Animals , Cattle , Female , Endometritis/veterinary , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...